COMPSCI 389
Introduction to Machine Learning

Evaluation Part 3

Prof. Philip S. Thomas (pthomas@cs.umass.edu)



Overview

* |n this lecture we will conduct a series of experiments to highlight:
* The need for confidence intervals
* How confidence intervals can be computed
* The different types of intervals that are often reported

* The code covered in this lecture will be provided in:
10 Evaluation Part 3.1ipynb



Load data, split train/test, compute
predictions and errors

# Load the data set
df = pd.read csv("data/GPA.csv", delimiter=',")

# We already loaded X and y, but do it again as a reminder
X = df.iloc[:, :-1]
y = df.iloc[:, -1]

# Split the data into training and testing sets (20% train, 80% test)
X_train, X _test, y train, y test = train_test split(X, y, test_size=0.8, shuffle=True)

N\

# Train the NearestNeighbor model

model = KNeaPestNeighbops& The algorithm used Let’s use most of the
model.fit(X_train, y_train) won’t be important for || data for evaluation for
this discussion. now.

# Compute predictions for X test
predictions = model.predict(X_test) We compute the squared error for all
the testing points (80% of the data).

# Compute the sample squared errors / We will “simulate” using less data by

squared_errors = (predictions - y_test) ** 2 | ,,insat portions of these errors.
display("Squared errors: ", squared_errors)




squared errors

16809 2.170701
31412 ©.030047
27099 ©.277381
41341 ©.440007
27941 ©.523206
2874 0.006944
21169 ©.017777
39080 ©.572534
24225 3.635379
22171 ©.005377

Name: gpa, Length: 34643, dtype: float64



ldea

* We would like to see what happens if we have test sets of different
sizes.

* We would like to see what happens if we have different samples in
the test set.

* |deally, we would generate completely new test sets (and squared

errors) for each experiment.
* We only have 43,303 points total and cannot generate more.

* Instead, we use random subsets of the test set (80% of the data)

* We vary the size of these subsets.

* We pretend that random subsets are independent (they are not)
* Note: This will be important at the end!



Compute the sample MSE from
percentage% of the squared errors.

# Function to compute average MSE for a given percentage of squared errors
def compute average mse(percentage, squared errors):
# Get the number of samples that we should use from squared_errors
subset size = int(percentage * len(squared errors))

# Randomly select that many indices (without replacement)

indices = np.random.choice(len(squared errors), subset size, replace=False)
Randomly select percentage% of the points, so each call produces results from a different simulated sample

# Get the average of the squared errors at the selected indices

average mse = squared errors.iloc[indices].mean()

return average mse



Plot: Sample MSE using different amounts of
the test data.

Note: The amount of
training data is not varied.

This represents the
setting where a fixed
modelis given, and we are
trying to evaluate that
model, regardless of how
it was created.
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Note: In practice, we
would only have one point
from this plot: the sample
MSE using our one testing
set. This plotis meant to
give further insight about
how much we can (not)
trust that value.

Let’s rerun this several
times and see what
happens.

Simulates the sample MSE we would get with different amounts of testing data 7



Plot: Sample MSE using different amounts of
the test data.

Sample MSE vs. Percentage of Test Set Used
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Plot: Sample MSE using different amounts of
the test data.

Sample MSE vs. Percentage of Test Set Used
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Plot: Sample MSE using different amounts of
the test data.

Sample MSE vs. Percentage of Test Set Used
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Plot: Sample MSE using different amounts of
the test data.

950 Sample MSE vs. Percentage of Test Set Used
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Notice: There was significant variation across runs!
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Sample MSE

Overlay of 100 runs
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Each entry in the tables from before showed one
single point from this plot.

Model MSE RMSE MAE R”A2
0 k-NN k=1 sigma=None—] 1.152084 | 1.073352 0.823743 -0.687769
0.579404 0.761186  0.596919  0.151190
-NN k=100 sigma=100 0.579572 0.761297 0.596952  0.150943
k-NN k=200 sigma=100 0.577554 0.759970 0.596220 0.153901
k-NN k=300 sigma=100 0.577443 0.759897 0.596408 0.154062
k-NN k=400 sigma=100 0.577620 0.760013  0.596670  0.153804
k-NN k=500 sigma=100 0.578077 0.760314 0.597044  0.153135

gma=None

o v~ W

T

20 40 60 80 100
Percentage of Test Set Used (%)

Note: It isn’t precisely the indicated point, since this
old table was for a model trained with more data.




Variance

* The previous plots show the variance of the sample statistics
(sample metrics).

* When we compute sample statistics from data, they are not
exactly equal to the population statistic (parameter).

* |f we had many data sets and computed the sample statistics
many times, we would see this variance.

* With only one data set, we get our estimate (e.g., the sample MSE)

* How much should we trust this estimate?
* We can use standard error to get an idea.
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Error Bars: Standard Error

* We can plot error bars on each point

* The width of each error bar is the standard error
* The pointis the average of the squared error samples
* The error bar width is the standard error of the squared error samples
* Recall:

n
n (x; —x)? 1 o
\J _

=1
* Here, x; isone ofthe squared error values.
 The standard deviation o captures how much the squared errors vary.

« +1.96 X SE gives a 95% confidence interval (under normality assumptions)
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Plot: Sample MSE using different amounts of the
test data, with error bars (standard error).

Sample MSE vs. Percentage of Test Set Used
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Plot: Sample MSE using different amounts of the
test data, with error bars (standard error).

Sample MSE vs. Percentage of Test Set Used
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Plot: Sample MSE using different amounts of the
test data, with error bars (standard error).
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Plot: Sample MSE using different amounts of the
test data, with error bars (standard error).

Sample MSE vs. Percentage of Test Set Used
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Error Bars: Standard Error

* Notice that given a single sample MSE
(one point on this plot) we can
compute the standard error.

* If we computed the sample MSE for
our test set and the standard error
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Freguency
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Error Bars: Standard Error

* Yes, if
* The squared errors are normally distributed
* The error bars were inflated by a factor of 1.96
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(the squared errors are far from normally distributed)



Error Bars: Standard Error x 1.96
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Error Bars: Standard Error x 1.96
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Error Bars: Standard Error x 1.96

* Remember, each

1.250
error bar has a 5%
error chance. 1.225 1
* With 20 points 1:200 1
and error bars, we | 1155
expect roughly 2
one (on average) £
to not contain the 7 1125
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Error Bars: Standard Error x 1.96

* Although not entirely reliable (due to lack of normality and
evaluating many estimates), error bars give an idea of how much
results can be trusted.

—_— Sample MSE vs. Percentage of Test Set Used

* Note: ML texts/papers almost never
Inflate standard-error error-bars by a ‘
factor of 1.96. 1200 1T

* Note: The blue points and error bars 1175 ]
can be computed from a single run

* Question: Why are the errorbars & .| 11T

still so wide when using 100% of ot
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Answer

* Recall that the squared errors are
computed from a portion of a test set.

At 100% of the test set, the plotted MSE is

1.250

always the MSE on the full test set. -
* This test set is still finite, and the sample a

MSE is still an approximation of the true
MSE!

* This plot underestimates how much the
estimates vary, particularly for large %.

* The red error bars do not have this bias.

* They are a more accurate depiction of
uncertainty.
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Common Evaluation

* Often ML texts evaluate models by doing the following:
* Partition the data into train/test.
* Train the model on the training data.
* Evaluate the model on the testing data.

* Report a performance metric and a number representing the uncertainty
in this performance metric.
* Format: performance tuncertainty

 The uncertainty value can be standard deviation, standard error (SE), or a
confidence interval (e.g., 1.96 XSE).

 Example (MSE of NN on GPA):
0.149729 + 0.0013
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Model
0 k-NN k=1 sigma=None
1 k-NN k=100 sigma=None
2 k-NN k=110 sigma=90

Model
0 k-NN k=1 sigma=None
T k-NN k=100 sigma=None
2 k-NN k=110 sigma=90

MSE

1.066188 1.032564
0.556796  0.746187
0.555601 0.745386

RMSE MAE RA2

+1.96 X SE

MSE

1.104 £ 0.075
0.565 + 0.041
0.565 + 0.041

RMSE

1.051 £ 0.029

0.752 + 0.020
0.752 £ 0.020

0.793455 -0.635682
0.587380  0.145797
0.586671 0.147631

MAE

0.803 £+ 0.029
0.586 + 0.020
0.586 + 0.020

We can be somewhat confident that the model learned by NN is worse than the
model learned by k-NN (k = 100) and weighted k-NN (k = 110,0 = 90).

We are not confident about k-NN vs weighted k-NN.

Note: Always check for the meaning of the + value! Standard error, standard
deviation, and confidence intervals all have very different meanings!
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Does this table give us confidence that k-NN with
k = 100 will outperform NN on the GPA data set?

Model MSE RMSE MAE
0 k-NN k=1 sigma=None  1.104 + 0.075 1.051 £ 0.029 0.803 + 0.029
T k-NN k=100 sigma=None 0.565 + 0.041 0.752 + 0.020 0.586 + 0.020
2 k-NN k=110 sigma=90 0.565 + 0.041 0.752 £ 0.020 0.586 + 0.020

No!
* This evaluates a single model learned by each of these algorithms.

* Different training sets will result in different models.

* Perhaps this training set was “lucky” for the latter two methods and
“unlucky” for the first!
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Serating

Thank you.

Degginmenic
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